Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Pendekatan Machine Learning dengan Optimasi GridSearchCV

Authors

DOI:

https://doi.org/10.33795/jip.v11i4.7938

Keywords:

Gagal Jantung, Klasifikasi, Random Forest, Parameter Optimasi, Grid SearchCV

Abstract

Gagal jantung menjadi salah satu penyebab utama tingginya angka kematian secara global, termasuk di Indonesia. Deteksi dini sangat krusial untuk mencegah progresivitas penyakit, tetapi pendekatan konvensional kerap memiliki keterbatasan akurasi. Penelitian ini memiliki tujuan untuk meningkatkan akurasi prediksi terhadap kelangsungan hidup pasien dengan kondisi gagal jantung melalui proses optimasi algoritma Machine Learning menggunakan teknik penyesuaian hiperparameter Grid SearchCV. Dataset yang digunakan berasal dari Heart Failure Clinical Records Dataset yang tersedia di UCI Machine Learning Repository, mencakup 299 data rekam medis pasien dengan 13 atribut klinis. Penelitian ini menggunakan enam algoritma klasifikasi, yang terdiri dari Random Forest, Decision Tree, Neural Network, K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), dan Naïve Bayes. Hasil evaluasi menunjukkan bahwa algoritma Random Forest menghasilkan akurasi tertinggi, yaitu sebesar 87%, sebelum dilakukan proses optimasi. Peningkatan performa dicapai dengan Grid SearchCV, menghasilkan akurasi akhir sebesar 95%. Temuan ini membuktikan bahwa optimasi Hyperparameter  mampu meningkatkan kinerja model secara signifikan. Implementasi hasil penelitian dapat mendukung rumah sakit dan layanan kesehatan dalam meningkatkan ketepatan diagnosis dini serta pemantauan pasien. Selain itu, studi ini menjadi referensi pengembangan sistem prediksi medis berbasis Machine Learning yang lebih mutakhir di masa depan.

Downloads

Download data is not yet available.

References

Abdulloh, F. F., & Pambudi, I. R. (2021). Analisis Sentimen Pengguna Youtube Terhadap Program Vaksin Covid-19. CSRID (Computer Science Research and Its Development Journal), 13(3), 141. https://doi.org/10.22303/csrid.13.3.2021.141-148

Al Amin, I., Wibisono, S., Lestariningsih, E., & Lutfi M.A, M. (2025). Optimizing Heart Disease Prediction with Random Forest and Ensemble Methods. CogITo Smart Journal, 11(1), 80–90. https://doi.org/10.31154/cogito.v11i1.782.80-90

Arifin, T., Agung, I. W. P., Junianto, E., Rachman, R., Wibowo, I. R., & Agustin, D. D. (2024). Breast Cancer Identification Using Machine Learning and Hyperparameter Optimization. Indonesian Journal of Electrical Engineering and Computer Science, 36(3), 1620–1630. https://doi.org/10.11591/ijeecs.v36.i3.pp1620-1630

Arisandi, R. (2023). Perbandingan Model Klasifikasi Random Forest Dengan Resampling Dan Tanpa Resampling Pada Pasien Penderita Gagal Jantung. Jurnal Gaussian, 12(1), 136–145. https://doi.org/10.14710/j.gauss.12.1.136-145

Bhadula, S., Adnan, M. M., Kumar, R., Rana, A., Kaliyaperumal, G., Rao, B. D., & Boob, N. S. (2024). Optimizing Random Forest Algorithms for LargeScale Data Analysis. 2024 7th International Conference on Contemporary Computing and Informatics (IC3I), 1673–1678. https://doi.org/10.1109/IC3I61595.2024.10829145

Bharti, R., Khamparia, A., Shabaz, M., Dhiman, G., Pande, S., & Singh, P. (2021). Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning. Computational Intelligence and Neuroscience, 2021(1). https://doi.org/10.1155/2021/8387680

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A., Deng, D., & Lindauer, M. (2023). Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. WIREs Data Mining and Knowledge Discovery, 13(2). https://doi.org/10.1002/widm.1484

Doni, B. T. R., Susanti, S., & Mubarok, A. (2021). Penerapan Data Mining Untuk Klasifikasi Penyakit Hepatocellular Carcinoma Menggunakan Algoritma Naïve Bayes. Jurnal Responsif : Riset Sains Dan Informatika, 3(1), 12–19. https://doi.org/10.51977/jti.v3i1.403

Gu, Q., Tian, J., Li, X., & Jiang, S. (2022). A novel Random Forest integrated model for imbalanced data classification problem. Knowledge-Based Systems, 250, 109050. https://doi.org/10.1016/j.knosys.2022.109050

Huang, S., Gu, W., & Chen, S. (2021). Optimization of Classification Rules and Voting Strategies for Random Forest. 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS), 381–387. https://doi.org/10.1109/CCIS53392.2021.9754599

Islam, S. S., Haque, M. S., Miah, M. S. U., Sarwar, T. Bin, & Nugraha, R. (2022). Application of machine learning algorithms to predict the thyroid disease risk: an experimental comparative study. PeerJ Computer Science, 8. https://doi.org/10.7717/PEERJ-CS.898

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31, 685–695. https://doi.org/10.1007/s12525-021-00475-2/Published

Jiang, X., & Xu, C. (2022). Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data. Journal of Clinical Medicine, 11(19), 5772. https://doi.org/10.3390/jcm11195772

Julia, T., Yovi, P., & Yanti, E. (2023). Komparasi Dalam Prediksi Gagal Jantung Dengan Menggunakan Metode C4.5 dan Naïve Bayes. Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM), 3(1), 394–402. https://doi.org/10.33998/jakakom.2023.3.1.759

Khoerunnisa, S., Shiddieq, D. F., & Nurhayati, D. (2025). Penerapan Algoritma Naive Bayes dengan Teknik TF-IDF dan Cross Validation untuk Analisis Sentimen Terhadap Starlink. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(2), 566–577. https://doi.org/10.57152/malcom.v5i2.1852

Newaz, A., Ahmed, N., & Shahriyar Haq, F. (2021). Survival prediction of heart failure patients using machine learning techniques. Informatics in Medicine Unlocked, 26, 100772. https://doi.org/10.1016/j.imu.2021.100772

Novaldy, F., & Herliana, A. (2021). Penerapan PSO pada Naïve Bayes untuk Prediksi Harapan Hidup Pasien Gagal Jantung. Jurnal Responsif : Riset Sains Dan Informatika, 3(1), 37–43. https://doi.org/10.51977/jti.v3i1.396

Prasetyo, S. Y. (2023). Prediksi Gagal Jantung Menggunakan Artificial Neural Network. Jurnal SAINTEKOM, 13(1), 79–88. https://doi.org/10.33020/saintekom.v13i1.379

Radzi, S. F. M., Karim, M. K. A., Saripan, M. I., Rahman, M. A. A., Isa, I. N. C., & Ibahim, M. J. (2021). Hyperparameter Tuning and Pipeline Optimization via Grid Search Method and Tree-Based AutoML in Breast Cancer Prediction. Journal of Personalized Medicine, 11(10). https://doi.org/10.3390/jpm11100978

Rahayu, W. P., Sudipta, I. I. G., Suryani, Surachman, A., Darmawiguna, M. I. G., Sutoyo, N. M., Slamet, I., Harlina, S., & Maysanjaya, D. I. M. (2024). Buku Ajar Data Mining (Efitra, Ed.; Pertama). Sonpedia.com. https://www.researchgate.net/publication/377415198

Rahmani, A. M., Yousefpoor, E., Yousefpoor, M. S., Mehmood, Z., Haider, A., Hosseinzadeh, M., & Ali Naqvi, R. (2021). Machine Learning (ML) in Medicine: Review, Applications, and Challenges. Mathematics, 9(22), 2970. https://doi.org/10.3390/math9222970

Ramdhani, Y., Putra, C. M., & Alamsyah, D. P. (2023). Heart Failure Prediction Based on Random Forest Algorithm using Genetic Algorithm for Feature Selection. International Journal of Reconfigurable and Embedded Systems (IJRES), 12(2), 205–214. https://doi.org/10.11591/ijres.v12.i2.pp205-214

Sakti, A. I., Saputra, L., Suhendra, H., Halim, N., Alviari, I., Ilham, M. R. N., Putri, M. H. N., & Dalimunthe, D. Y. (2024). Implementasi Artificial Neural Network (ANN) dalam Memprediksi Nilai Tukar Rupiah terhadap Dolar Amerika. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 12(2), 124–130. https://doi.org/10.37905/euler.v12i2.26654

Salman, H. A., Kalakech, A., & Steiti, A. (2024). Random Forest Algorithm Overview. Babylonian Journal of Machine Learning, 2024, 69–79. https://doi.org/10.58496/bjml/2024/007

Saputra, R. A., & Pratama, A. (2025). Implementasi Decision Tree Untuk Prediksi Harga Rumah Di Daerah Tebet. Journal of Information System Management (JOISM) e-ISSN, 6(2), 164–170.

Siregar, P. A., Purba, P. D., Pasaribu, P. J., & Bakara, R. K. (2023). Implementasi Algoritma Random Forest Dalam Klasifikasi Diagnosis Penyakit Stroke. Jurnal Penelitian Rumpun Ilmu Teknik, 2(4), 155–164. https://doi.org/10.55606/juprit.v2i4.3039

Subarkah, P., Damayanti, W. R., & Permana, R. A. (2022). Comparison of Correlated Algorithm Accuracy Naive Bayes Classifier and Naive Bayes Classifier for Classification of heart failure. ILKOM Jurnal Ilmiah, 14(2), 120–125. https://doi.org/10.33096/ilkom.v14i2.1148.120-125

Subası, N. (2024). Comprehensive Analysis of Grid and Randomized Search on Dataset Performance. European Journal of Engineering and Applied Sciences, 7(2), 77–83. https://doi.org/10.55581/ejeas.1581494

Sun, Z., Wang, G., Li, P., Wang, H., Zhang, M., & Liang, X. (2024). An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Systems with Applications, 237, 121549. https://doi.org/10.1016/j.eswa.2023.121549

Taye, M. M. (2023). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers, 12(5), 91. https://doi.org/10.3390/computers12050091

UCI Machine Learning Repository. (2020, April 2). Heart Failure Clinical Records. UCI Machine Learning Repository. https://archive.ics.uci.edu/dataset/519/heart+failure+clinical+records

Ujianto, N. T., Gunawan, Fadillah, H., Fanti, A. P., Saputra, A. D., & Ramadhan, I. G. (2025). Penerapan algoritma K-Nearest Neighbors (KNN) untuk klasifikasi citra medis. IT-Explore: Jurnal Penerapan Teknologi Informasi Dan Komunikasi, 4(1), 33–43. https://doi.org/10.24246/itexplore.v4i1.2025.pp33-43

Yolanda, N., Santi, I. H., & Permadi, D. F. H. (2022). Analisis Sentimen Analisis Sentimen Popularitas Aplikasi Moodle dan Edmodo Menggunakan Algoritma Support Vector Machine. Jurnal Algoritme, 3(1), 48–59. https://doi.org/10.35957/algoritme.v3i1.3313

Yuliani, Y. (2022). Algoritma Random Forest Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Seleksi Fitur Bestfirst. Infotek: Jurnal Informatika Dan Teknologi, 5(2), 298–306. https://doi.org/10.29408/jit.v5i2.5896

Downloads

Published

2025-08-29

How to Cite

Mulyani, S., & Arifin, T. (2025). Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Pendekatan Machine Learning dengan Optimasi GridSearchCV. Jurnal Informatika Polinema, 11(4), 577–586. https://doi.org/10.33795/jip.v11i4.7938