
Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 15, No.2 (2025)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 121

Performance Evaluation and the Impact of File Size

on Various AES Encryption Modes

Galih Putra Riatma1, Bagas Satya Dian Nugraha2, Anugrah Nur Rahmanto3, Fitri4

1Digital Telecommunication Network Study Program, Department of Electrical Engineering, State Polytechnic of Malang,

65141, Indonesia.
2,3Department of Informatics, State Polytechnic of Malang, 65141, Indonesia.

4Department of Electrical Engineering, State Polytechnic of Malang, 65141, Indonesia.

1griatma@polinema.ac.id , 2bagassatya@polinema.ac.id, 3anugrahnur@polinema.ac.id, 4fitri@polinema.ac.id

Abstract— Important factors in the system are performance and information security. A secure system does not necessarily have fast

performance because it takes time for encryption processing that takes time. For that, the system must use an encryption mode that

suits the needs. This study measures the encryption performance of five AES methods, namely AES-ECB, AES-SIV, AES-CBC, AES-

EAX, and AES-GCM on text data, and images with sizes of 1KB, 10KB, 100KB, and 1000KB. Performance testing is carried out using

the same hardware and software to ensure consistency. From the analysis results, it was found that the AES-ECB (Electronic Codebook)

encryption results had the fastest encryption time but sacrificed security because of the data patterns seen in the ciphertext. Meanwhile,

AES-SIV (Synthetic Initialization Vector) produced performance that tended to be constant for all file sizes, without sacrificing security

against nonce reuse. AES-CBC (Cipher Block Chaining) produced a time that increased as the file size increased. The larger the

encrypted file, the slower the CBC encryption performance due to the chaining nature of CBC encryption. Meanwhile, EAX and GCM

show significant time improvements for small file sizes but not too significant improvements for large files. From the results of EAX

and GCM, it can be concluded that both modes are efficient for encrypting large files. From the analysis results, it was found that GCM

mode provides strong security without a significant impact on system performance. This research can help developers when developing

systems that require encryption in environments with limited resources such as embedded systems or IoT devices.

Keywords—AES, comparison, encryption, performance, security

I. INTRODUCTION

Encryption is a fundamental technique for securing digital

communication, transforming human-readable information

into an unreadable format to protect confidentiality, integrity,

and authentication. The Advanced Encryption Standard (AES),

a symmetric block cipher standardized by the National Institute

of Standards and Technology (NIST) in 2001, remains one of

the most widely adopted encryption algorithms across various

applications [1][2]. AES supports three key lengths—128-bit,

192-bit, and 256-bit—along with multiple encryption modes

that enhance security and operational efficiency. Among these,

Electronic Codebook (ECB), Cipher Block Chaining (CBC),

Encrypt-then-Authenticate-then-Translate (EAX), Galois

Counter Mode (GCM), and Synthetic Initialization Vector

(SIV) offer distinct trade-offs in terms of security, complexity,

and computational speed [3].

Despite the broad adoption of AES, there remains a lack of

comparative studies examining the performance of AES modes

in constrained environments, particularly on resource-limited

microcontrollers. While prior research has explored encryption

efficiency in general computing environments, few studies

have systematically analyzed how different AES modes behave

under computational constraints. Microcontrollers play a vital

role in embedded systems and Internet of Things (IoT)

applications, often operating with limited processing power,

memory, and energy resources. In such environments, an

encryption algorithm must strike a careful balance between

security and performance—ensuring strong data protection

without imposing excessive computational overhead that could

degrade system responsiveness.

Encryption algorithms designed for standard computing

platforms may not be optimized for resource-restricted devices.

A poorly chosen encryption method could significantly impact

system efficiency, leading to higher energy consumption,

reduced operational lifespan, and slower execution times. For

battery-powered devices and IoT deployments, excessive

computation demands can drastically limit usability, forcing

developers to make trade-offs between security and system

efficiency. Selecting an appropriate encryption mode is

essential for applications where real-time processing speed and

minimal resource usage are critical, such as sensor networks,

low-power embedded controllers, and wireless communication

systems.

This research seeks to bridge that gap by evaluating the

encryption and decryption performance of five AES modes

across various file sizes. By identifying the most efficient mode,

this study lays the groundwork for future implementation on

microcontrollers, where processing power, memory, and

energy consumption are critical concerns. A well-optimized

encryption scheme can extend device longevity, improve

system reliability, and ensure seamless data transmission,

making encryption practical even in constrained environments.

Additionally, encryption plays a critical role in securing

Long Range (LoRa) communication, an open, unencrypted

protocol designed for long-distance, low-power data

transmission [6][7]. LoRa-enabled devices are commonly used

mailto:1griatma@polinema.ac.id
mailto:2bagassatya@polinema.ac.id
mailto:anugrahnur@polinema.ac.id,%204fitri@polinema.ac.id

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 15, No.2 (2025)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 122

in IoT deployments, remote sensing, and smart infrastructure,

where computational power is highly constrained. Given

LoRa’s inherent lack of built-in encryption, selecting an

optimal AES mode for constrained environments becomes

even more relevant. If encryption is inefficient, it could hinder

LoRa’s low-power advantage, limiting its usability in

applications that require minimal energy consumption, such as

environmental monitoring and industrial automation. By

determining which AES mode offers the best balance of

security and efficiency, this study contributes to enhancing

LoRa-enabled device security while ensuring minimal impact

on system performance.

This comparative analysis aims to provide valuable insights

for developers, network administrators, and embedded system

engineers, offering a practical foundation for selecting the most

suitable encryption approach for real-world applications where

computational resources are limited. By understanding the

performance characteristics of various AES modes, future

research can focus on implementing the top-performing

encryption methods in embedded systems, ensuring both

security and operational efficiency in constrained

environments.

II. METHOD

A. System Description

This study proposes the development of a system capable of

performing data encryption and decryption using five

operational modes of the Advanced Encryption Standard (AES)

algorithm: Cipher Block Chaining (CBC), Encrypt-then-

Authenticate-then-Translate (EAX), Electronic Codebook

(ECB), Galois/Counter Mode (GCM), and Synthetic

Initialization Vector (SIV). The primary objective of this

research is to analyze the encryption and decryption processing

times across these five AES modes with varying data sizes and

encryption keys [9]. The findings are expected to provide

insights into the performance and security characteristics of

each AES operational mode.

The hardware utilized for this study consists of a computer

equipped with an Intel i5-4670 processor, 16GB RAM, and a

512GB SATA SSD. This configuration represents a modern

computational environment positioned at the mid-range level

of contemporary computing systems. The use of an SSD

mitigates potential I/O bottlenecks associated with traditional

HDD storage, ensuring a more efficient evaluation of

encryption performance. It should be noted that the experiment

is done using Python environments, version 3.10, developed

using Visual Code under Windows 10 Operating System. All

external factors such as antivirus, background programs, and

precautions against any factors that might slow the process

down (overheating, drivers, background I/O process) have

been minimized as much as possible.

The custom-built application for this research is developed

in Python 3.10, using Visual Studio Code as the integrated

development environment (IDE) under the Windows 10

Operating System. Python was chosen for its rich ecosystem

and support for high-resolution timing functions, which are

crucial for accurately measuring the minimal processing times

involved in encryption and decryption operations. The

encryption processes are implemented using the

PyCryptodome library, a robust and well-supported tool for

handling multiple AES modes. This library enables seamless

integration of various AES operational modes while ensuring

that all cryptographic operations adhere to industry standards,

as shown in Fig. 1.

Figure 1. The flow of how the system measures time

The research adopts an experimental methodology, utilizing

text data of varying sizes of 1 KB, 10 KB, 100 KB, and 1 MB.

this is done to represent common usage scenarios ranging from

small to large files. Randomized data ensures an even

distribution, preventing encryption bias. The encryption key

employed is a 256-bit symmetric key, as AES-256 is

recognized for providing the highest level of security

recommended by the National Institute of Standards and

Technology (NIST) [10].

The encryption and decryption processes are executed using

a custom-built application developed in Python [11]. To

measure encryption and decryption time, the study employs the

perf_counter_ns() function from Python's time module, chosen

due to its high-resolution timing capability. Process isolation is

maintained to ensure results are not affected by input/output

(I/O) operations.

Each combination of data size and encryption key undergoes

ten iterations, with the average processing time computed to

minimize statistical noise caused by operating system

interruptions. Time measurements focus solely on the

encryption process, excluding the time required for reading and

writing encrypted files. This approach effectively eliminates

potential errors caused by I/O bottlenecks, ensuring accurate

performance evaluation.

The overall system architecture is modular, ensuring a clear

separation of concerns that makes precise performance

measurement possible. This design approach echoes the

modular implementations found in cryptography-based

systems [12][13]. The key components include:

- Encryption Module: This module is responsible for

instantiating the AES cipher for each of the five modes. Each

mode is configured with its specific parameters, such as

initialization vectors (IVs) for CBC, synthetic IV generation

for SIV, or authentication tag computation for EAX and GCM

[14]. This separation ensures that mode-specific overhead can

be independently analyzed.

- Data Input Module: The system generates randomized text

data covering a range of sizes: 1 KB, 10 KB, 100 KB, and 1

MB. Using similar data prevents any bias in the encryption

process and simulates a variety of potential real-world

scenarios, from small sensor payloads to larger document files.

The similar but not exact data nature of the input ensures an

Encryption (ECB,
GCM, AEX, CBC, SIV)

Encryption
Process

Encrypted
Data

Encryption
Done

Read File Timer start Timer end Write File

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 15, No.2 (2025)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 123

even distribution of bits, eliminating issues caused by repetitive

patterns [15].

- Timing Module: High-resolution timing is captured using

Python’s time.perf_counter_ns() function [16]. Immediately

before the encryption operation begins and after it ends,

timestamps are recorded to obtain precise measurements in

nanoseconds. By isolating the encryption operation from file

I/O processes, the timing module ensures that the measured

processing times reflect only the computational aspects of the

encryption techniques [17].

- Logging Module: For each experimental run, performance

metrics (encryption and decryption times) are logged. Each test

is repeated ten times for every combination of data size and

encryption mode, and the average processing time is computed

to minimize statistical noise that might arise from operating

system interruptions [18].

Each component of the system is designed to facilitate a

robust and repeatable evaluation of AES encryption

performance [19]. By using a consistent hardware and software

environment, the system minimizes variability, allowing clear

attribution of performance differences to the encryption modes

rather than external factors. The decision to employ a 256-bit

key standardized across all experiments ensures that variations

in performance are due solely to the mode of operation rather

than differences in cryptographic strength.

Furthermore, while the experimental setup is executed on a

moderately powerful desktop system, the insights gained from

this study are targeted toward future implementations on

resource-constrained microcontrollers. Especially in contexts

such as LoRa communication systems. In these environments,

even minor differences in computational efficiency can have

significant impacts on energy consumption and overall system

responsiveness.

B. Program Initialization

All necessary variables and parameters required for the

encryption process are initialized. This includes defining the

encryption key, preparing the data to be encrypted, and creating

the corresponding encryption object. The encryption key is 8

characters alphanumeric word. Which will be the same for all

AES operation modes conducted in this experiment to make

sure the key does not affect performance.

from Crypto.Cipher import AES
import time

key = b'Sixteen byte key'
data = b'This is the data to encrypt'
cipher = AES.new(key, AES.MODE_EAX)

C. Timestamp Before Encryption

A precise timestamp is recorded immediately before the

encryption process begins using the time.perf_counter_ns()

function. This function provides high-resolution time

measurement in nanoseconds, ensuring exceptional accuracy

for execution time evaluation.

start_time = time.perf_counter_ns()

This statement saves the current counter value in the

start_time variable. Later, after the encryption process is

complete, capturing another timestamp and computing the

difference allows us to determine the exact number of

nanoseconds that the encryption took. By using this high-

precision timer, we ensure that our performance measurements

are reliable and that any variations in the encryption latency

can be detected and analyzed accurately. This approach is

particularly valuable when repeating the encryption process

multiple times to derive an average execution time, thus

providing a robust basis for comparing the different AES

operational modes.

D. Implementation of AES Modes

The encryption process is executed on the preprocessed

data, ensuring that only the encryption operation is performed

without any additional tasks such as file reading or writing.

ciphertext,tag=cipher.encrypt_and_digest(data)

Each AES mode offers a distinct approach to how plaintext

is processed, affecting the encryption speed and overall

resource footprint. In our custom-built Python-based

application, we leverage the PyCryptodome library to specify

the mode explicitly when creating the AES cipher object.

Below we describe the implementation details for each mode:

• AES-ECB (Electronic Codebook):

In ECB mode, each block of plaintext is encrypted

independently, with no use of an initialization vector (IV) or

chaining between blocks. This simplicity makes ECB the

fastest in terms of pure computation; however, it is known to

be less secure since identical plaintext blocks produce identical

ciphertext blocks. In our implementation, ECB is invoked

using:

cipher_ecb = AES.new(key, AES.MODE_ECB)
ciphertext = cipher_ecb.encrypt(pad(data, AES.block_size))

Note that proper padding is applied, which is critical

because the plaintext length must be a multiple of the block size.

• AES-CBC (Cipher Block Chaining):

CBC mode improves security by XORing each plaintext

block with the previous ciphertext block before encryption,

with a randomly generated IV for the first block. This chaining

introduces additional overhead, as every block’s encryption

depends on the output of the preceding block, and the IV must

be transmitted securely alongside the ciphertext. In our

implementation:

iv = get_random_bytes(AES.block_size)
cipher_cbc = AES.new(key, AES.MODE_CBC, iv)
ciphertext = cipher_cbc.encrypt(pad(data, AES.block_size))

The process of generating the IV, performing the XOR

operation, and handling padding explains the longer processing

time observed for larger file sizes.

• AES-EAX (Encrypt-then-Authenticate-then-Translate):

 EAX mode is designed to provide both confidentiality and

data integrity via authentication. It combines encryption with

an authentication tag generated during the

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 15, No.2 (2025)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 124

encrypt_and_digest operation. Though it adds the

overhead of computing the authentication tag, this mode is

often preferred for its robustness against tampering:

cipher_eax = AES.new(key, AES.MODE_EAX)
ciphertext, tag = cipher_eax.encrypt_and_digest(data)

The inherent verification process adds to the processing

time, especially noticeable with larger data sizes.

• AES-GCM (Galois/Counter Mode):

GCM is similar to EAX in that it offers authenticated

encryption. However, GCM uses a counter (CTR) mode for

encryption and a Galois field multiplication for authentication,

which, when optimized, allows for parallel processing of

blocks. In our setup, we initialize GCM as follows:

cipher_gcm = AES.new(key, AES.MODE_GCM)
ciphertext, tag = cipher_gcm.encrypt_and_digest(data)

While GCM provides excellent throughput in parallel

hardware implementations, our Python implementation still

reveals slight overhead due to the additional multiplication

steps for authentication.

• AES-SIV (Synthetic Initialization Vector):

SIV mode is designed for nonce-misuse resistance,

ensuring secure encryption even if IVs or nonces are repeated.

SIV mode computes a synthetic IV using both the message and

key, then uses the IV in the standard encryption process. While

this design offers strong security guarantees, it incurs extra

computational cost. Our implementation leverages the

available support in PyCryptodome (or an alternative library if

needed) with:

cipher_siv = AES.new(key, AES.MODE_SIV)
ciphertext, tag = cipher_siv.encrypt_and_digest(data)

The additional steps in synthesizing the IV result in

relatively higher processing times compared with other modes.

E. Timestamp after Encryption

Immediately upon completion of the encryption process,

another timestamp is recorded using time.perf_counter_ns().

This serves as the end time, which is then utilized to compute

the encryption duration.

end_time = time.perf_counter_ns()

The time difference between the start and end timestamps is

computed to determine the encryption duration. This

measurement captures only the encryption processing time,

eliminating external influences such as file reading and writing

operations.

encryption_duration = end_time - start_time

print(f"Durasi Enkripsi: {encryption_duration} nanodetik")

This subtraction yields the total time taken solely for the

encryption operation, expressed in nanoseconds. It is important

to note that this measurement is isolated from any external I/O

operations, such as reading from or writing to a file; hence, the

computed duration reflects only the computational time spent

on encryption. High-precision timing in this context is critical,

since even minor variations can be significant when comparing

different encryption modes or when optimizing for resource-

constrained environments. For easier readability, the result

from nanosecond will be converted to millisecond (ms).

III. RESULTS AND DISCUSSION

Table 1 presents the encryption speed measurements for

various file sizes. The measurements were conducted by

recording the encryption time in milliseconds (ms) for each file

size across five trials, ensuring that the data variation is

captured with greater accuracy. the table displays the average

encryption time calculated from these five trials. This table aids

in analyzing the performance of the encryption algorithm,

particularly by illustrating how encryption time varies with

different file sizes. The filesizes are presented in KiloByte(KB),

the file type should not matter as in this operation, but for

clarity, the files are mix of image and text file, as shown in

Table I.

TABLE I

MEASURED TIME FOR ENCRYPTION

AES Mode File Size (kB) Average time (ms)

CBC

1 2.016

10 3.9

100 23.292

1000 57.321

EAX

1 0.301

10 0.546

100 1.908

1000 10.706

ECB

1 0.095

10 0.108

100 1.087

1000 2.77

GCM

1 0.331

10 0.474

100 2.311

1000 9.226

SIV

1 1.984

10 1.797

100 4.87

1000 17.618

Figure 2 illustrates the comparison of AES encryption

speeds for several modes of operation using file sizes ranging

from 1 to 1000 KB. The graph demonstrates that AES-ECB

(Electronic Codebook) exhibits a linear relationship between

encryption time and file size. Although AES-GCM, AES-EAX,

and AES-SIV are not as fast as AES-ECB, they display

relatively stable encryption times regardless of the increasing

file size. In contrast, AES-CBC shows a sharply increasing

encryption time as the file size grows, indicating that this mode

is less efficient when handling larger files.

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 15, No.2 (2025)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 125

Figure 2. The chart of time needed to complete each encryption operations.

n this study, we convert the measured encryption times into

a normalized performance metric, defined as the number of

operations (i.e., file encryptions) performed per second (ops/s).

By regarding each file encryption as a single discrete operation,

we transform raw timing data into a more intuitive and scalable

measure of throughput. This metric enables us to compare

different AES modes on a common scale, effectively

decoupling performance from the specific file sizes used during

testing.

Using operations per second as a performance indicator

offers several advantages. First, it provides a standardized

means of evaluation that facilitates direct comparison across

diverse encryption configurations. For instance, rather than

stating that an AES mode operates at a specific latency in

milliseconds, framing the result in ops/s conveys the system's

capacity to handle large number of sequential encryptions,

which is especially relevant in high-throughput environments.

Second, this metric abstracts the dependency on file size by

normalizing performance measurements; even when only

small data packets are processed as is typical in many IoT

applications the ops/s metric remains directly applicable to

scenarios where high-frequency encryption transactions are

required.

By converting the encryption times into a performance

metric, the number of operations (i.e., encryptions) performed

per second. We do this by treating a single file encryption as

one operation and calculating

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = (
1000

𝑡𝑖𝑚𝑒
) (1)

Using the equation 1 we get the performance metric of each

file size of the fastest (ECB) and slowest (CBC) method of AES.

We get the result in Table II.

TABLE II

PERFORMANCE METRIC OF FASTEST AND SLOWEST ENCRYPTION

File size

(KB)

CBC Time

(ms)

CBC

Performance

(ops/s)

EBC time

(ms)

EBC

Performance

(ops/s)

1 2 500 0,09 11111.11

10 3,4 294.12 0.1 10000

100 23 43.48 1.87 534.76

1000 57 17.54 2.77 361.02

After getting the operation per second metric, we can

calculate the performance efficiency metric using the equation

2.

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
fastest−slowest

slowest
) × 100% (2)

• For 1 KB Files:

ECB Speed = 11111.11 ops/s

CBC Speed = 500 ops/s

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
10611.11

11111.11
) × 100% = 95.50 %

• For 10 KB Files:

ECB Speed = 10000 ops/s

CBC Speed = 294.12 ops/s

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
9705.88

10000
) × 100% = 97.06 %

• For 100 KB Files:

ECB Speed = 534.76 ops/s

CBC Speed = 43.48 ops/s

 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
491.28

534.76
) × 100% = 91.85 %

• For 1000 KB Files:

ECB Speed = 361.02 ops/s

CBC Speed = 17.54 ops/s

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
343.48

361.02
) × 100% = 95.14 %

In short, the fastest mode, ECB only needs roughly 5 – 3%

of time needed by the slowest mode CBC. Conclusions drawn

from these tests indicate that AES-ECB exhibits stable

encryption times even as the file size increases. However, it

demonstrates significant security weaknesses, as patterns in the

plaintext may become apparent in the ciphertext. This mode

lacks both chaining and authentication, rendering it less secure

overall. In contrast, AES-CBC processes each block of

plaintext by combining it with the preceding block of

ciphertext prior to encryption. This additional step increases

both complexity and processing time, making AES-CBC less

efficient in terms of encryption time.

Figure 3. Comparison between fastest and second fastest AES modes.

Shown in figure 3 is comparison between fastest and second

fastest AES modes.

AES-GCM exhibits a predictable increase in encryption

time as file size grows, indicating that its performance is

largely linear with respect to the amount of data processed. For

very small inputs—for instance, 1 KB files—the observed time

(approximately 0.331 ms) is influenced significantly by fixed

overheads such as cipher initialization, generation of nonces,

and setup for authenticated encryption. As the file size

increases to 10 KB and beyond, these constant costs become

less dominant, and the time required to process each additional

block of data starts to reflect a near-linear increase. In practice,

while the underlying authenticator (involving Galois field

0.095 0.331 0.108

2.110.331 0.474 2.311

9.226

0

5

10

1 10 100 1000

Ti
m

e
 (

m
s)

GCM vs ECB

ECB GCM

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 15, No.2 (2025)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 126

multiplication) introduces additional computational

complexity compared to non-authenticated modes, the

resulting slope, or per-KB processing time, remains consistent.

This linearity means that when scaling up from 100 KB to

1000 KB, the increase in encryption time (from roughly

2.311 ms to 9.226 ms) is primarily due to the additional data

being processed rather than non-scalable overhead, confirming

that AES-GCM’s runtime grows in direct proportion to data

size after accounting for the base cost.

AES-ECB on the other hand, stands out as the fastest mode,

primarily because it operates on each data block independently

without any added overhead associated with chaining or

authentication. The very low encryption time for a 1 KB file

(approximately 0.095 ms) suggests that there is a small fixed

overhead due to initialization and function call latency that

does not scale much with file size for extremely small datasets.

However, as file size increases, the encryption time for ECB

mode follows a linear trend, with the processing time increment

reflecting the addition of new blocks to the encryption pipeline.

For example, moving from 10 KB to 100 KB and then to

1000 KB sees predictable increases, with timings of about

0.108 ms for 10 KB, 1.087 ms for 100 KB, and 2.77 ms for

1000 KB. This consistent addition per unit of data confirms that

ECB’s computational effort scales linearly with file size.

Despite the attractive performance characteristics, it is

important to note that the simplicity of ECB poses significant

security risks such as revealing patterns in plaintext which

fundamentally undermines its suitability for secure

communications, despite its superior speed.

Figure 4. Comparison between the median AES modes.

Examining the performance of the middle ground result data

in figure 4 reveals that AES-GCM, which falls between the

fastest (AES-EAX) and the slowest (AES-SIV) modes,

displays a near-linear increase in encryption time as file size

grows. While AES-GCM benefits from authenticated

encryption and efficient processing of larger data blocks

through its counter mode and Galois field multiplication, the

time difference compared to AES-EAX is marginal. For

example, on 1 KB files, AES-GCM averages around 0.331 ms

while AES-EAX clocks in at approximately 0.301 ms; and for

1000 KB files, AES-GCM records about 9.226 ms compared to

AES-EAX’s 10.706 ms. This similarity in performance

indicates that AES-GCM does not yield a significant speed

advantage over the already fast AES-EAX mode. For IoT

devices where every microsecond counts in extending battery

life and ensuring real-time responsiveness the extra overhead

introduced by the authenticated encryption in AES-GCM may

not deliver a clear performance benefit over alternatives that

are marginally faster.

In resource-restricted environments where computational

efficiency is paramount, the negligible performance difference

between AES-GCM and AES-EAX becomes a deciding factor.

For instance, in scenarios such as industrial IoT sensor

networks or remote environmental monitoring, the choice of

encryption should ideally maximize throughput while

consuming minimal energy. Although AES-GCM offers robust

security features, its median performance does not stand out

when compared to modes like AES-EAX. In these cases,

designers might opt for a mode that either delivers faster

operations if the data sensitivity level allows for a slight

relaxation in security measures or choose a mode that

integrates security measures only when absolutely necessary.

Overall, the lack of a clear advantage in throughput for AES-

GCM suggests that its complexity does not translate into

significant operational benefits on ultra-small and energy-

constrained devices, making it less suitable in situations where

every operation per second matters.

IV. CONCLUSION

For IoT devices operating under stringent resource

constraints—such as limited processing power, memory, and

battery life—selecting an efficient encryption mode is crucial.

AES-GCM is highly recommended in these scenarios because

it provides authenticated encryption, ensuring both the

confidentiality and integrity of transmitted data. For example,

smart sensors deployed in remote agricultural fields often use

LoRa communication to transmit environmental data such as

soil moisture and temperature. In these cases, AES-GCM’s

balanced approach minimizes computational overhead while

delivering the security assurances required to prevent data

tampering or spoofing, The performance of AES-GCM scales

well with data size, making it ideal for applications that must

process transmissions reliably under energy-constrained

conditions. Additionally, Muttaqin et al. [20] discuss AES

implementations on IoT modules, reinforcing that modes such

as AES-GCM, which provide both confidentiality and data

integrity while maintaining scalability with data size, are ideal

for such applications. On the other hand, there are situations

where security may be a secondary consideration compared to

processing speed, particularly if the data itself is non-sensitive.

AES-ECB offers remarkably fast encryption speeds because it

processes each block of data independently without the

overhead of chaining or authentication. In a practical scenario,

a network of industrial IoT devices might periodically log

ambient operational data where maintaining a high throughput

is the primary concern. If the data is used solely for monitoring

non-critical parameters such as ambient temperature or

humidity, where occasional exposure of patterns is acceptable

AES-ECB can be considered. However, one must remain

cautious, as the absence of chaining can expose repeated

patterns in the plaintext, leading to potential security

0

5

10

15

20

1 10 100 1000

Ti
m

e
(m

s)

EAX vs GCM vs SIV

EAX GCM SIV

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 15, No.2 (2025)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 127

vulnerabilities. In instances where the transmitted data does not

require strong protection, and resource conservation is the

overriding priority, the use of ECB mode can be justified.

Habibi et al.[21] indirectly support the idea that simpler block

processing (as in ECB) offers speed advantages. However,

caution is advised because ECB’s lack of chaining makes it less

secure when encryption of patterned data is involved.

Alternatively, AES-EAX stands as a favorable option when

data integrity and authentication are paramount. Although

slightly slower than AES-GCM, AES-EAX integrates both

encryption and a message authentication code within a single

process. This mode is particularly useful in applications like

remote patient monitoring devices or critical industrial control

systems, where even minimal data corruption might lead to

severe consequences. These applications require that not only

is the data kept confidential, but also that any unauthorized

modification is immediately detectable. Therefore, while

resource-constrained IoT deployments often benefit from the

efficiency of AES-GCM, narrow cases where data

manipulation pose a high risk may justify the additional

overhead of AES-EAX. In conclusion, the choice of AES

encryption mode in IoT devices should be tailored to the

specific requirements of the application. For most resource-

restricted environments, AES-GCM offers an optimal balance

between speed and robust security, making it the preferred

encryption mode. In contrast, AES-ECB may be acceptable for

non-critical data where performance takes precedence, while

AES-EAX is recommended for cases that demand a higher

degree of data integrity and authentication. This nuanced

approach ensures that IoT systems can remain energy-efficient

and high-performing without compromising on essential

security features.

REFERENCES

[1] R. M. Muchamad, A. Asriyanik, and A. Pambudi,

“Implementasi Algoritma Advanced Encryption Standard

(AES) untuk Mengenkripsi Datastore pada Aplikasi

Berbasis Android,” Jurnal Mnemonic, vol. 6, no. 1, pp.

55–64, 2023. doi: 10.36040/mnemonic.v6i1.5889.

[2] N. Mouha, “Review of the Advanced Encryption

Standard,” National Institute of Standards and

Technology (NIST), 2021. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8319.

pdf. [Accessed: Jun. 2025].

[3] A. Prameshwari and N. P. Sastra, “Implementasi

Algoritma Advanced Encryption Standard (AES) 128

Untuk Enkripsi dan Dekripsi File Dokumen,” Eksplora

Informatika, vol. 8, no. 1, p. 52, 2018. doi:

10.30864/eksplora.v8i1.139.

[4] U. K. Prodhan, A. H. M. Shahariar, I. Hussain, F. Rumi,

J. Kabi, and K. Nazrul, “Performance analysis of parallel

implementation of Advanced Encryption Standard (AES)

over serial implementation,” International Journal of

Information Science and Technology, vol. 2, no. 6, pp. 1–

16, 2012. doi: 10.5121/IJIST.2012.2601.

[5] S. Kumar, “A review on high-speed Advanced

Encryption Standard (AES),” Journal of Emerging

Technologies and Innovative Research, vol. 5, no. 8, pp.

1255–1260, 2018. [Online]. Available:

https://www.jetir.org/view?paper=JETIRA006219.

[Accessed: Jun. 2025].

[6] M. P. Manuel and K. Daimi, “Implementing

cryptography in LoRa-based communication devices for

unmanned ground vehicle applications,” SN Applied

Sciences, vol. 3, no. 4, 2021. doi: 10.1007/s42452-021-

04377-y.

[7] T. Taufiqqurrachman and D. Elsandi, “Security analysis

and encryption time comparison on cryptography

Advanced Encryption Standard (AES),” Jurnal Inovatif,

vol. 5, no. 1, p. 60, 2022. doi: 10.32832/inova-

tif.v5i1.8345.

[8] K. Muttaqin and J. Rahmadoni, “Analysis and design of

file security system using AES cryptography,” Journal of

Advanced Encryption and Technology Studies, vol. 1, no.

2, pp. 113–123, 2020. doi: 10.37385/JAETS.V1I2.78.

[9] U. Pujeri, S. S. Desai, and A. Savyanavar, Encryption

Techniques for the Modern World, IGI Global, 2020, pp.

285–319. doi: 10.4018/978-1-5225-8458-2.CH013.

[10] O. Agbelusi and M. Olumuyiwa, “Comparative analysis

of encryption algorithms,” European Journal of

Technology, vol. 7, no. 1, pp. 1–9, 2023. doi:

10.47672/ejt.1312.

[11] N. Agnihotri and A. K. Sharma, “Comparative analysis of

different symmetric encryption techniques based on

computation time,” Grid Computing, 2020. doi:

10.1109/PDGC50313.2020.9315848.

[12] B. Olivia et al., “Implementasi Kriptografi pada

Keamanan Data menggunakan algoritma Advanced

Encryption Standard (AES),” Jurnal Simantec, vol. 11,

no. 2, pp. 167–174, 2023.

[13] A. Prameshwari and N. P. Sastra, “Implementasi

Algoritma Advanced Encryption Standard (AES) 128

Untuk Enkripsi dan Dekripsi File Dokumen,” Eksplora

Informatika, vol. 8, no. 1, p. 52, 2018. doi:

10.30864/eksplora.v8i1.139.

[14] A. U. Rahman, S. U. Miah, and S. Azad, “Advanced

encryption standard,” Practical Cryptography:

Algorithms and Implementations Using C++, pp. 91–

126, 2014. doi: 10.1201/b17707.

[15] R. Ravida and H. A. Santoso, “Advanced Encryption

Standard (AES) 128-bit untuk keamanan data Internet of

Things (IoT) tanaman hidroponik,” Jurnal RESTI

(Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 6,

2020. doi: 10.29207/resti.v4i6.2478.

[16] B. P. and A. Farisi, “Perbandingan kinerja algoritma

kandidat AES dalam enkripsi dan dekripsi file dokumen,”

MDP Student Conference, vol. 2, no. 1, pp. 282–289,

2023. doi: 10.35957/mdp-sc.v2i1.4367.

[17] J. S. Schwarz, C. Chapman, and E. McDonnell Feit, “An

overview of Python,” in Python for Marketing Research

and Analytics, Springer International Publishing, 2020,

pp. 9–45. doi: 10.1007/978-3-030-49720-0_2.

[18] A. Bogdanov, “AES-based authenticated encryption

modes in parallel high-performance software,” IACR

Journal of Telecommunication Network (Jurnal Jaringan Telekomunikasi) Vol. 15, No.2 (2025)

E-ISSN: 2654-6531 P- ISSN: 2407-0807 128

Cryptology ePrint Archive, 2014. [Online]. Available:

http://eprint.iacr.org/2014/186.pdf. [Accessed: Jun.

2025].

[19] C. Christopher, A. Gunawan, and S. Prima, “Encrypted

short message service design using combination of

modified AES and Vigenere cipher algorithm,” EMACS

Journal, vol. 4, no. 2, pp. 73–77, 2022. doi:

10.21512/emacsjournal.v4i2.8273.

[20] H. D. Kotha, “AES encryption and decryption standards,”

Journal of Physics: Conference Series, vol. 1228, no. 1,

p. 012006, 2019. doi: 10.1088/1742-

6596/1228/1/012006.

[21] National Institute of Standards and Technology,

“Recommendation for block cipher modes of operation,”

NIST Special Publication 800-38A, 2001. [Online].

Available: http://csrc.nist.gov/publications/drafts/800-

38g/sp800_38g_draft.pdf. [Accessed: Jun. 2025].

