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Abstract— Important factors in the system are performance and information security. A secure system does not necessarily have fast 

performance because it takes time for encryption processing that takes time. For that, the system must use an encryption mode that 

suits the needs. This study measures the encryption performance of five AES methods, namely AES-ECB, AES-SIV, AES-CBC, AES-

EAX, and AES-GCM on text data, and images with sizes of 1KB, 10KB, 100KB, and 1000KB. Performance testing is carried out using 

the same hardware and software to ensure consistency. From the analysis results, it was found that the AES-ECB (Electronic Codebook) 

encryption results had the fastest encryption time but sacrificed security because of the data patterns seen in the ciphertext. Meanwhile, 

AES-SIV (Synthetic Initialization Vector) produced performance that tended to be constant for all file sizes, without sacrificing security 

against nonce reuse. AES-CBC (Cipher Block Chaining) produced a time that increased as the file size increased. The larger the 

encrypted file, the slower the CBC encryption performance due to the chaining nature of CBC encryption. Meanwhile, EAX and GCM 

show significant time improvements for small file sizes but not too significant improvements for large files. From the results of EAX 

and GCM, it can be concluded that both modes are efficient for encrypting large files. From the analysis results, it was found that GCM 

mode provides strong security without a significant impact on system performance. This research can help developers when developing 

systems that require encryption in environments with limited resources such as embedded systems or IoT devices. 
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I. INTRODUCTION 

Encryption is a fundamental technique for securing digital 

communication, transforming human-readable information 

into an unreadable format to protect confidentiality, integrity, 

and authentication. The Advanced Encryption Standard (AES), 

a symmetric block cipher standardized by the National Institute 

of Standards and Technology (NIST) in 2001, remains one of 

the most widely adopted encryption algorithms across various 

applications [1][2]. AES supports three key lengths—128-bit, 

192-bit, and 256-bit—along with multiple encryption modes 

that enhance security and operational efficiency. Among these, 

Electronic Codebook (ECB), Cipher Block Chaining (CBC), 

Encrypt-then-Authenticate-then-Translate (EAX), Galois 

Counter Mode (GCM), and Synthetic Initialization Vector 

(SIV) offer distinct trade-offs in terms of security, complexity, 

and computational speed [3]. 

Despite the broad adoption of AES, there remains a lack of 

comparative studies examining the performance of AES modes 

in constrained environments, particularly on resource-limited 

microcontrollers. While prior research has explored encryption 

efficiency in general computing environments, few studies 

have systematically analyzed how different AES modes behave 

under computational constraints. Microcontrollers play a vital 

role in embedded systems and Internet of Things (IoT) 

applications, often operating with limited processing power, 

memory, and energy resources. In such environments, an 

encryption algorithm must strike a careful balance between 

security and performance—ensuring strong data protection 

without imposing excessive computational overhead that could 

degrade system responsiveness. 

Encryption algorithms designed for standard computing 

platforms may not be optimized for resource-restricted devices. 

A poorly chosen encryption method could significantly impact 

system efficiency, leading to higher energy consumption, 

reduced operational lifespan, and slower execution times. For 

battery-powered devices and IoT deployments, excessive 

computation demands can drastically limit usability, forcing 

developers to make trade-offs between security and system 

efficiency. Selecting an appropriate encryption mode is 

essential for applications where real-time processing speed and 

minimal resource usage are critical, such as sensor networks, 

low-power embedded controllers, and wireless communication 

systems. 

This research seeks to bridge that gap by evaluating the 

encryption and decryption performance of five AES modes 

across various file sizes. By identifying the most efficient mode, 

this study lays the groundwork for future implementation on 

microcontrollers, where processing power, memory, and 

energy consumption are critical concerns. A well-optimized 

encryption scheme can extend device longevity, improve 

system reliability, and ensure seamless data transmission, 

making encryption practical even in constrained environments. 

Additionally, encryption plays a critical role in securing 

Long Range (LoRa) communication, an open, unencrypted 

protocol designed for long-distance, low-power data 

transmission [6][7]. LoRa-enabled devices are commonly used 
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in IoT deployments, remote sensing, and smart infrastructure, 

where computational power is highly constrained. Given 

LoRa’s inherent lack of built-in encryption, selecting an 

optimal AES mode for constrained environments becomes 

even more relevant. If encryption is inefficient, it could hinder 

LoRa’s low-power advantage, limiting its usability in 

applications that require minimal energy consumption, such as 

environmental monitoring and industrial automation. By 

determining which AES mode offers the best balance of 

security and efficiency, this study contributes to enhancing 

LoRa-enabled device security while ensuring minimal impact 

on system performance. 

This comparative analysis aims to provide valuable insights 

for developers, network administrators, and embedded system 

engineers, offering a practical foundation for selecting the most 

suitable encryption approach for real-world applications where 

computational resources are limited. By understanding the 

performance characteristics of various AES modes, future 

research can focus on implementing the top-performing 

encryption methods in embedded systems, ensuring both 

security and operational efficiency in constrained 

environments. 

II. METHOD  

A. System Description 

This study proposes the development of a system capable of 

performing data encryption and decryption using five 

operational modes of the Advanced Encryption Standard (AES) 

algorithm: Cipher Block Chaining (CBC), Encrypt-then-

Authenticate-then-Translate (EAX), Electronic Codebook 

(ECB), Galois/Counter Mode (GCM), and Synthetic 

Initialization Vector (SIV). The primary objective of this 

research is to analyze the encryption and decryption processing 

times across these five AES modes with varying data sizes and 

encryption keys [9]. The findings are expected to provide 

insights into the performance and security characteristics of 

each AES operational mode. 

The hardware utilized for this study consists of a computer 

equipped with an Intel i5-4670 processor, 16GB RAM, and a 

512GB SATA SSD. This configuration represents a modern 

computational environment positioned at the mid-range level 

of contemporary computing systems. The use of an SSD 

mitigates potential I/O bottlenecks associated with traditional 

HDD storage, ensuring a more efficient evaluation of 

encryption performance. It should be noted that the experiment 

is done using Python environments, version 3.10, developed 

using Visual Code under Windows 10 Operating System. All 

external factors such as antivirus, background programs, and 

precautions against any factors that might slow the process 

down (overheating, drivers, background I/O process) have 

been minimized as much as possible. 

The custom-built application for this research is developed 

in Python 3.10, using Visual Studio Code as the integrated 

development environment (IDE) under the Windows 10 

Operating System. Python was chosen for its rich ecosystem 

and support for high-resolution timing functions, which are 

crucial for accurately measuring the minimal processing times 

involved in encryption and decryption operations. The 

encryption processes are implemented using the 

PyCryptodome library, a robust and well-supported tool for 

handling multiple AES modes. This library enables seamless 

integration of various AES operational modes while ensuring 

that all cryptographic operations adhere to industry standards, 

as shown in Fig. 1. 

 

 

Figure 1. The flow of how the system measures time 

The research adopts an experimental methodology, utilizing 

text data of varying sizes of 1 KB, 10 KB, 100 KB, and 1 MB. 

this is done to represent common usage scenarios ranging from 

small to large files. Randomized data ensures an even 

distribution, preventing encryption bias. The encryption key 

employed is a 256-bit symmetric key, as AES-256 is 

recognized for providing the highest level of security 

recommended by the National Institute of Standards and 

Technology (NIST) [10]. 

The encryption and decryption processes are executed using 

a custom-built application developed in Python [11]. To 

measure encryption and decryption time, the study employs the 

perf_counter_ns() function from Python's time module, chosen 

due to its high-resolution timing capability. Process isolation is 

maintained to ensure results are not affected by input/output 

(I/O) operations. 

Each combination of data size and encryption key undergoes 

ten iterations, with the average processing time computed to 

minimize statistical noise caused by operating system 

interruptions. Time measurements focus solely on the 

encryption process, excluding the time required for reading and 

writing encrypted files. This approach effectively eliminates 

potential errors caused by I/O bottlenecks, ensuring accurate 

performance evaluation. 

The overall system architecture is modular, ensuring a clear 

separation of concerns that makes precise performance 

measurement possible. This design approach echoes the 

modular implementations found in cryptography-based 

systems [12][13]. The key components include: 

- Encryption Module: This module is responsible for 

instantiating the AES cipher for each of the five modes. Each 

mode is configured with its specific parameters, such as 

initialization vectors (IVs) for CBC, synthetic IV generation 

for SIV, or authentication tag computation for EAX and GCM 

[14]. This separation ensures that mode-specific overhead can 

be independently analyzed. 

- Data Input Module: The system generates randomized text 

data covering a range of sizes: 1 KB, 10 KB, 100 KB, and 1 

MB. Using similar data prevents any bias in the encryption 

process and simulates a variety of potential real-world 

scenarios, from small sensor payloads to larger document files. 

The similar but not exact data nature of the input ensures an 
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even distribution of bits, eliminating issues caused by repetitive 

patterns [15]. 

- Timing Module: High-resolution timing is captured using 

Python’s time.perf_counter_ns() function [16]. Immediately 

before the encryption operation begins and after it ends, 

timestamps are recorded to obtain precise measurements in 

nanoseconds. By isolating the encryption operation from file 

I/O processes, the timing module ensures that the measured 

processing times reflect only the computational aspects of the 

encryption techniques [17]. 

- Logging Module: For each experimental run, performance 

metrics (encryption and decryption times) are logged. Each test 

is repeated ten times for every combination of data size and 

encryption mode, and the average processing time is computed 

to minimize statistical noise that might arise from operating 

system interruptions [18]. 

Each component of the system is designed to facilitate a 

robust and repeatable evaluation of AES encryption 

performance [19]. By using a consistent hardware and software 

environment, the system minimizes variability, allowing clear 

attribution of performance differences to the encryption modes 

rather than external factors. The decision to employ a 256-bit 

key standardized across all experiments ensures that variations 

in performance are due solely to the mode of operation rather 

than differences in cryptographic strength. 

Furthermore, while the experimental setup is executed on a 

moderately powerful desktop system, the insights gained from 

this study are targeted toward future implementations on 

resource-constrained microcontrollers. Especially in contexts 

such as LoRa communication systems. In these environments, 

even minor differences in computational efficiency can have 

significant impacts on energy consumption and overall system 

responsiveness. 

B. Program Initialization 

All necessary variables and parameters required for the 

encryption process are initialized. This includes defining the 

encryption key, preparing the data to be encrypted, and creating 

the corresponding encryption object. The encryption key is 8 

characters alphanumeric word. Which will be the same for all 

AES operation modes conducted in this experiment to make 

sure the key does not affect performance. 

 
from Crypto.Cipher import AES 
import time 
 
key = b'Sixteen byte key' 
data = b'This is the data to encrypt' 
cipher = AES.new(key, AES.MODE_EAX) 
 
 

C. Timestamp Before Encryption 

A precise timestamp is recorded immediately before the 

encryption process begins using the time.perf_counter_ns() 

function. This function provides high-resolution time 

measurement in nanoseconds, ensuring exceptional accuracy 

for execution time evaluation. 

 
start_time = time.perf_counter_ns() 

 

This statement saves the current counter value in the 

start_time variable. Later, after the encryption process is 

complete, capturing another timestamp and computing the 

difference allows us to determine the exact number of 

nanoseconds that the encryption took. By using this high-

precision timer, we ensure that our performance measurements 

are reliable and that any variations in the encryption latency 

can be detected and analyzed accurately. This approach is 

particularly valuable when repeating the encryption process 

multiple times to derive an average execution time, thus 

providing a robust basis for comparing the different AES 

operational modes. 

D. Implementation of AES Modes 

The encryption process is executed on the preprocessed 

data, ensuring that only the encryption operation is performed 

without any additional tasks such as file reading or writing. 

 
ciphertext,tag=cipher.encrypt_and_digest(data) 

Each AES mode offers a distinct approach to how plaintext 

is processed, affecting the encryption speed and overall 

resource footprint. In our custom-built Python-based 

application, we leverage the PyCryptodome library to specify 

the mode explicitly when creating the AES cipher object. 

Below we describe the implementation details for each mode: 

• AES-ECB (Electronic Codebook): 

In ECB mode, each block of plaintext is encrypted 

independently, with no use of an initialization vector (IV) or 

chaining between blocks. This simplicity makes ECB the 

fastest in terms of pure computation; however, it is known to 

be less secure since identical plaintext blocks produce identical 

ciphertext blocks. In our implementation, ECB is invoked 

using: 

 
cipher_ecb = AES.new(key, AES.MODE_ECB) 
ciphertext = cipher_ecb.encrypt(pad(data, AES.block_size)) 

 

Note that proper padding is applied, which is critical 

because the plaintext length must be a multiple of the block size. 

• AES-CBC (Cipher Block Chaining): 

CBC mode improves security by XORing each plaintext 

block with the previous ciphertext block before encryption, 

with a randomly generated IV for the first block. This chaining 

introduces additional overhead, as every block’s encryption 

depends on the output of the preceding block, and the IV must 

be transmitted securely alongside the ciphertext. In our 

implementation: 

iv = get_random_bytes(AES.block_size) 
cipher_cbc = AES.new(key, AES.MODE_CBC, iv) 
ciphertext = cipher_cbc.encrypt(pad(data, AES.block_size)) 
 

The process of generating the IV, performing the XOR 

operation, and handling padding explains the longer processing 

time observed for larger file sizes. 

• AES-EAX (Encrypt-then-Authenticate-then-Translate): 

 EAX mode is designed to provide both confidentiality and 

data integrity via authentication. It combines encryption with 

an authentication tag generated during the 
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encrypt_and_digest operation. Though it adds the 

overhead of computing the authentication tag, this mode is 

often preferred for its robustness against tampering: 

cipher_eax = AES.new(key, AES.MODE_EAX) 
ciphertext, tag = cipher_eax.encrypt_and_digest(data) 
 

The inherent verification process adds to the processing 

time, especially noticeable with larger data sizes. 

• AES-GCM (Galois/Counter Mode): 

GCM is similar to EAX in that it offers authenticated 

encryption. However, GCM uses a counter (CTR) mode for 

encryption and a Galois field multiplication for authentication, 

which, when optimized, allows for parallel processing of 

blocks. In our setup, we initialize GCM as follows: 

cipher_gcm = AES.new(key, AES.MODE_GCM) 
ciphertext, tag = cipher_gcm.encrypt_and_digest(data) 

 

While GCM provides excellent throughput in parallel 

hardware implementations, our Python implementation still 

reveals slight overhead due to the additional multiplication 

steps for authentication.  

• AES-SIV (Synthetic Initialization Vector): 

SIV mode is designed for nonce-misuse resistance, 

ensuring secure encryption even if IVs or nonces are repeated. 

SIV mode computes a synthetic IV using both the message and 

key, then uses the IV in the standard encryption process. While 

this design offers strong security guarantees, it incurs extra 

computational cost. Our implementation leverages the 

available support in PyCryptodome (or an alternative library if 

needed) with: 

cipher_siv = AES.new(key, AES.MODE_SIV) 
ciphertext, tag = cipher_siv.encrypt_and_digest(data) 
 

The additional steps in synthesizing the IV result in 

relatively higher processing times compared with other modes. 

 

E. Timestamp after Encryption 

Immediately upon completion of the encryption process, 

another timestamp is recorded using time.perf_counter_ns(). 

This serves as the end time, which is then utilized to compute 

the encryption duration. 

 
end_time = time.perf_counter_ns() 
 

The time difference between the start and end timestamps is 

computed to determine the encryption duration. This 

measurement captures only the encryption processing time, 

eliminating external influences such as file reading and writing 

operations. 

 
encryption_duration = end_time - start_time 

print(f"Durasi Enkripsi: {encryption_duration} nanodetik") 

This subtraction yields the total time taken solely for the 

encryption operation, expressed in nanoseconds. It is important 

to note that this measurement is isolated from any external I/O 

operations, such as reading from or writing to a file; hence, the 

computed duration reflects only the computational time spent 

on encryption. High-precision timing in this context is critical, 

since even minor variations can be significant when comparing 

different encryption modes or when optimizing for resource-

constrained environments. For easier readability, the result 

from nanosecond will be converted to millisecond (ms).  

III. RESULTS AND DISCUSSION 

Table 1 presents the encryption speed measurements for 

various file sizes. The measurements were conducted by 

recording the encryption time in milliseconds (ms) for each file 

size across five trials, ensuring that the data variation is 

captured with greater accuracy. the table displays the average 

encryption time calculated from these five trials. This table aids 

in analyzing the performance of the encryption algorithm, 

particularly by illustrating how encryption time varies with 

different file sizes. The filesizes are presented in KiloByte(KB), 

the file type should not matter as in this operation, but for 

clarity, the files are mix of image and text file, as shown in 

Table I. 

TABLE I 

MEASURED TIME FOR ENCRYPTION 

AES Mode File Size (kB) Average time (ms) 

CBC 

1 2.016 

10 3.9 

100 23.292 

1000 57.321 

EAX 

1 0.301 

10 0.546 

100 1.908 

1000 10.706 

ECB 

1 0.095 

10 0.108 

100 1.087 

1000 2.77 

GCM 

1 0.331 

10 0.474 

100 2.311 

1000 9.226 

SIV 

1 1.984 

10 1.797 

100 4.87 

1000 17.618 

 

Figure 2 illustrates the comparison of AES encryption 

speeds for several modes of operation using file sizes ranging 

from 1 to 1000 KB. The graph demonstrates that AES-ECB 

(Electronic Codebook) exhibits a linear relationship between 

encryption time and file size. Although AES-GCM, AES-EAX, 

and AES-SIV are not as fast as AES-ECB, they display 

relatively stable encryption times regardless of the increasing 

file size. In contrast, AES-CBC shows a sharply increasing 

encryption time as the file size grows, indicating that this mode 

is less efficient when handling larger files. 
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Figure 2. The chart of time needed to complete each encryption operations.  

n this study, we convert the measured encryption times into 

a normalized performance metric, defined as the number of 

operations (i.e., file encryptions) performed per second (ops/s). 

By regarding each file encryption as a single discrete operation, 

we transform raw timing data into a more intuitive and scalable 

measure of throughput. This metric enables us to compare 

different AES modes on a common scale, effectively 

decoupling performance from the specific file sizes used during 

testing. 

Using operations per second as a performance indicator 

offers several advantages. First, it provides a standardized 

means of evaluation that facilitates direct comparison across 

diverse encryption configurations. For instance, rather than 

stating that an AES mode operates at a specific latency in 

milliseconds, framing the result in ops/s conveys the system's 

capacity to handle large number of sequential encryptions, 

which is especially relevant in high-throughput environments. 

Second, this metric abstracts the dependency on file size by 

normalizing performance measurements; even when only 

small data packets are processed as is typical in many IoT 

applications the ops/s metric remains directly applicable to 

scenarios where high-frequency encryption transactions are 

required. 

By converting the encryption times into a performance 

metric, the number of operations (i.e., encryptions) performed 

per second. We do this by treating a single file encryption as 

one operation and calculating 

 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = (
1000

𝑡𝑖𝑚𝑒
)    (1) 

Using the equation 1 we get the performance metric of each 

file size of the fastest (ECB) and slowest (CBC) method of AES. 

We get the result in Table II.  

 
TABLE II 

PERFORMANCE METRIC OF FASTEST AND SLOWEST ENCRYPTION 

File size 

(KB) 

CBC Time 

(ms) 

CBC 

Performance 

(ops/s) 

EBC time 

(ms) 

EBC 

Performance 

(ops/s) 

1 2 500 0,09 11111.11 

10 3,4 294.12 0.1 10000 

100 23 43.48 1.87 534.76 

1000 57 17.54 2.77 361.02 

 

After getting the operation per second metric, we can 

calculate the performance efficiency metric using the equation 

2. 

 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
fastest−slowest

slowest
) × 100%  (2) 

 

• For 1 KB Files: 

ECB Speed = 11111.11 ops/s 

CBC Speed = 500 ops/s 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
10611.11

11111.11
) × 100% =  95.50 %  

• For 10 KB Files: 

ECB Speed = 10000 ops/s 

CBC Speed = 294.12 ops/s 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
9705.88

10000
) × 100% =  97.06 %  

• For 100 KB Files: 

ECB Speed = 534.76 ops/s 

CBC Speed = 43.48 ops/s 

 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
491.28

534.76
) × 100% =  91.85 % 

• For 1000 KB Files: 

ECB Speed = 361.02 ops/s 

CBC Speed = 17.54 ops/s 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (
343.48

361.02
) × 100% =  95.14 %  

 

In short, the fastest mode, ECB only needs roughly 5 – 3% 

of time needed by the slowest mode CBC. Conclusions drawn 

from these tests indicate that AES-ECB exhibits stable 

encryption times even as the file size increases. However, it 

demonstrates significant security weaknesses, as patterns in the 

plaintext may become apparent in the ciphertext. This mode 

lacks both chaining and authentication, rendering it less secure 

overall. In contrast, AES-CBC processes each block of 

plaintext by combining it with the preceding block of 

ciphertext prior to encryption. This additional step increases 

both complexity and processing time, making AES-CBC less 

efficient in terms of encryption time. 

 

Figure 3. Comparison between fastest and second fastest AES modes. 

Shown in figure 3 is comparison between fastest and second 

fastest AES modes. 

AES-GCM exhibits a predictable increase in encryption 

time as file size grows, indicating that its performance is 

largely linear with respect to the amount of data processed. For 

very small inputs—for instance, 1 KB files—the observed time 

(approximately 0.331 ms) is influenced significantly by fixed 

overheads such as cipher initialization, generation of nonces, 

and setup for authenticated encryption. As the file size 

increases to 10 KB and beyond, these constant costs become 

less dominant, and the time required to process each additional 

block of data starts to reflect a near-linear increase. In practice, 

while the underlying authenticator (involving Galois field 
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multiplication) introduces additional computational 

complexity compared to non-authenticated modes, the 

resulting slope, or per-KB processing time, remains consistent. 

This linearity means that when scaling up from 100 KB to 

1000 KB, the increase in encryption time (from roughly 

2.311 ms to 9.226 ms) is primarily due to the additional data 

being processed rather than non-scalable overhead, confirming 

that AES-GCM’s runtime grows in direct proportion to data 

size after accounting for the base cost. 

AES-ECB on the other hand, stands out as the fastest mode, 

primarily because it operates on each data block independently 

without any added overhead associated with chaining or 

authentication. The very low encryption time for a 1 KB file 

(approximately 0.095 ms) suggests that there is a small fixed 

overhead due to initialization and function call latency that 

does not scale much with file size for extremely small datasets. 

However, as file size increases, the encryption time for ECB 

mode follows a linear trend, with the processing time increment 

reflecting the addition of new blocks to the encryption pipeline. 

For example, moving from 10 KB to 100 KB and then to 

1000 KB sees predictable increases, with timings of about 

0.108 ms for 10 KB, 1.087 ms for 100 KB, and 2.77 ms for 

1000 KB. This consistent addition per unit of data confirms that 

ECB’s computational effort scales linearly with file size. 

Despite the attractive performance characteristics, it is 

important to note that the simplicity of ECB poses significant 

security risks such as revealing patterns in plaintext which 

fundamentally undermines its suitability for secure 

communications, despite its superior speed. 

 

Figure 4. Comparison between the median AES modes. 

Examining the performance of the middle ground result data 

in figure 4 reveals that AES-GCM, which falls between the 

fastest (AES-EAX) and the slowest (AES-SIV) modes, 

displays a near-linear increase in encryption time as file size 

grows. While AES-GCM benefits from authenticated 

encryption and efficient processing of larger data blocks 

through its counter mode and Galois field multiplication, the 

time difference compared to AES-EAX is marginal. For 

example, on 1 KB files, AES-GCM averages around 0.331 ms 

while AES-EAX clocks in at approximately 0.301 ms; and for 

1000 KB files, AES-GCM records about 9.226 ms compared to 

AES-EAX’s 10.706 ms. This similarity in performance 

indicates that AES-GCM does not yield a significant speed 

advantage over the already fast AES-EAX mode. For IoT 

devices where every microsecond counts in extending battery 

life and ensuring real-time responsiveness the extra overhead 

introduced by the authenticated encryption in AES-GCM may 

not deliver a clear performance benefit over alternatives that 

are marginally faster. 

In resource-restricted environments where computational 

efficiency is paramount, the negligible performance difference 

between AES-GCM and AES-EAX becomes a deciding factor. 

For instance, in scenarios such as industrial IoT sensor 

networks or remote environmental monitoring, the choice of 

encryption should ideally maximize throughput while 

consuming minimal energy. Although AES-GCM offers robust 

security features, its median performance does not stand out 

when compared to modes like AES-EAX. In these cases, 

designers might opt for a mode that either delivers faster 

operations if the data sensitivity level allows for a slight 

relaxation in security measures or choose a mode that 

integrates security measures only when absolutely necessary. 

Overall, the lack of a clear advantage in throughput for AES-

GCM suggests that its complexity does not translate into 

significant operational benefits on ultra-small and energy-

constrained devices, making it less suitable in situations where 

every operation per second matters. 

IV. CONCLUSION 

For IoT devices operating under stringent resource 

constraints—such as limited processing power, memory, and 

battery life—selecting an efficient encryption mode is crucial. 

AES-GCM is highly recommended in these scenarios because 

it provides authenticated encryption, ensuring both the 

confidentiality and integrity of transmitted data. For example, 

smart sensors deployed in remote agricultural fields often use 

LoRa communication to transmit environmental data such as 

soil moisture and temperature. In these cases, AES-GCM’s 

balanced approach minimizes computational overhead while 

delivering the security assurances required to prevent data 

tampering or spoofing, The performance of AES-GCM scales 

well with data size, making it ideal for applications that must 

process transmissions reliably under energy-constrained 

conditions. Additionally, Muttaqin et al. [20] discuss AES 

implementations on IoT modules, reinforcing that modes such 

as AES-GCM, which provide both confidentiality and data 

integrity while maintaining scalability with data size, are ideal 

for such applications. On the other hand, there are situations 

where security may be a secondary consideration compared to 

processing speed, particularly if the data itself is non-sensitive. 

AES-ECB offers remarkably fast encryption speeds because it 

processes each block of data independently without the 

overhead of chaining or authentication. In a practical scenario, 

a network of industrial IoT devices might periodically log 

ambient operational data where maintaining a high throughput 

is the primary concern. If the data is used solely for monitoring 

non-critical parameters such as ambient temperature or 

humidity, where occasional exposure of patterns is acceptable 

AES-ECB can be considered. However, one must remain 

cautious, as the absence of chaining can expose repeated 

patterns in the plaintext, leading to potential security 
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vulnerabilities. In instances where the transmitted data does not 

require strong protection, and resource conservation is the 

overriding priority, the use of ECB mode can be justified. 

Habibi et al.[21] indirectly support the idea that simpler block 

processing (as in ECB) offers speed advantages. However, 

caution is advised because ECB’s lack of chaining makes it less 

secure when encryption of patterned data is involved. 

Alternatively, AES-EAX stands as a favorable option when 

data integrity and authentication are paramount. Although 

slightly slower than AES-GCM, AES-EAX integrates both 

encryption and a message authentication code within a single 

process. This mode is particularly useful in applications like 

remote patient monitoring devices or critical industrial control 

systems, where even minimal data corruption might lead to 

severe consequences. These applications require that not only 

is the data kept confidential, but also that any unauthorized 

modification is immediately detectable. Therefore, while 

resource-constrained IoT deployments often benefit from the 

efficiency of AES-GCM, narrow cases where data 

manipulation pose a high risk may justify the additional 

overhead of AES-EAX. In conclusion, the choice of AES 

encryption mode in IoT devices should be tailored to the 

specific requirements of the application. For most resource-

restricted environments, AES-GCM offers an optimal balance 

between speed and robust security, making it the preferred 

encryption mode. In contrast, AES-ECB may be acceptable for 

non-critical data where performance takes precedence, while 

AES-EAX is recommended for cases that demand a higher 

degree of data integrity and authentication. This nuanced 

approach ensures that IoT systems can remain energy-efficient 

and high-performing without compromising on essential 

security features. 
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