Main Article Content
Abstract
Sebagian besar kendaraan listrik menggunakan sistem pengereman regeneratif untuk mengubah energi kinetik menjadi energi listrik yang disimpan kembali ke baterai. Namun, efektivitas sistem ini masih dapat ditingkatkan. Penelitian ini mengusulkan sistem pengereman gabungan antara rem regeneratif dan mekanis, dengan kontrol intensitas menggunakan nilai variabel dari ADC (Analog to Digital Converter). Motor BLDC 250 watt dimodifikasi agar dapat berfungsi sebagai generator selama pengereman. Sistem dikendalikan menggunakan algoritma Field-Oriented Control (FOC) yang memungkinkan pembalikan arah medan magnet stator, menciptakan torsi pengereman. Konverter digunakan untuk mengatur intensitas rem regeneratif selama deselerasi. Pengujian dilakukan secara real-time di lintasan jalan untuk mengukur energi yang dipulihkan selama pengereman. Hasilnya menunjukkan bahwa sistem ini mampu mengembalikan energi sebesar 11,7% dari total energi yang dikonsumsi selama akselerasi. Sistem pengereman gabungan dengan kontrol FOC dan ADC variable ini mampu meningkatkan efisiensi energi dan memberikan pengereman yang lebih efektif pada kendaraan listrik. Pendekatan ini tidak hanya meningkatkan keselamatan, tetapi juga memperpanjang umur baterai dan komponen mekanis.
Keywords
Article Details
Copyright (c) 2025 Zakiyah Amalia, Achsanul Khabib, Erni Yudaningtyas, Talifatim Machfuroh, Siti Duratun Nasiqiati Rosady, Fica Aida Nadhifatul Aini

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- G. Tzortzis, A. Amargianos, S. Piperidis, E. Koutroulis, and N. C. Tsourveloudis, “Development of a compact regenerative braking system for electric vehicles,” in 2015 23rd Mediterranean Conference on Control and Automation (MED). IEEE, jun 2015.
- R. E. Hellmund, “Regenerative braking of electric vehicles,” Transactions of the American Institute of Electrical
- Engineers, vol. XXXVI, pp. 1–78, jan 1917.
- M. Gupta, “Evaluation of regenerative braking and its functionality in electric vehicles,” in 2020 International
- Conference for Emerging Technology (INCET). IEEE, jun 2020.
- F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless-control algorithm for high-dynamic performance PMSM,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2092–2100, jun 2010.
- J. Jiang and J. Holtz, “An efficient braking method for controlled AC drives with a diode rectifier front end,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1299–1307, 2001.
- E. Yesilbag and L. T. Ergene, “Field oriented control of permanent magnet synchronous motors used in washers,” in
- 16th International Power Electronics and Motion Control Conference and Exposition. IEEE, sep 2014.
- F. Yusivar, N. Hidayat, R. Gunawan, and A. Halim, “Implementation of field oriented control for permanent magnet synchronous motor,” in 2014 International Conference on Electrical Engineering and Computer Science (ICEECS). IEEE, nov 2014.
- A. Saghafinia, H. Ping, and M. Uddin, “Sensored field oriented control of a robust induction motor drive using a novel boundary layer fuzzy controller,” Sensors, vol. 13, no. 12, pp. 17 025–17 056, dec 2013.
- S.-M. Liu, C.-H. Tu, C.-L. Lin, and V.-T. Liu, “Field-oriented driving/braking control for electric vehicles,” Electronics, vol. 9, no. 9, p. 1484, sep 2020.
- F. Golesorkhie, F. Yang, L. Vlacic, and G. Tansley, “Field oriented control-based reduction of the vibration and power consumption of a blood pump, Energies, vol. 13, no. 15, p. 3907, jul 2020.
References
G. Tzortzis, A. Amargianos, S. Piperidis, E. Koutroulis, and N. C. Tsourveloudis, “Development of a compact regenerative braking system for electric vehicles,” in 2015 23rd Mediterranean Conference on Control and Automation (MED). IEEE, jun 2015.
R. E. Hellmund, “Regenerative braking of electric vehicles,” Transactions of the American Institute of Electrical
Engineers, vol. XXXVI, pp. 1–78, jan 1917.
M. Gupta, “Evaluation of regenerative braking and its functionality in electric vehicles,” in 2020 International
Conference for Emerging Technology (INCET). IEEE, jun 2020.
F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless-control algorithm for high-dynamic performance PMSM,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2092–2100, jun 2010.
J. Jiang and J. Holtz, “An efficient braking method for controlled AC drives with a diode rectifier front end,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1299–1307, 2001.
E. Yesilbag and L. T. Ergene, “Field oriented control of permanent magnet synchronous motors used in washers,” in
16th International Power Electronics and Motion Control Conference and Exposition. IEEE, sep 2014.
F. Yusivar, N. Hidayat, R. Gunawan, and A. Halim, “Implementation of field oriented control for permanent magnet synchronous motor,” in 2014 International Conference on Electrical Engineering and Computer Science (ICEECS). IEEE, nov 2014.
A. Saghafinia, H. Ping, and M. Uddin, “Sensored field oriented control of a robust induction motor drive using a novel boundary layer fuzzy controller,” Sensors, vol. 13, no. 12, pp. 17 025–17 056, dec 2013.
S.-M. Liu, C.-H. Tu, C.-L. Lin, and V.-T. Liu, “Field-oriented driving/braking control for electric vehicles,” Electronics, vol. 9, no. 9, p. 1484, sep 2020.
F. Golesorkhie, F. Yang, L. Vlacic, and G. Tansley, “Field oriented control-based reduction of the vibration and power consumption of a blood pump, Energies, vol. 13, no. 15, p. 3907, jul 2020.