Main Article Content
Abstract
Penelitian ini membandingkan efektivitas algoritma YOLOv5 dan YOLOv8 dalam mendeteksi objek seperti manusia, hewan, dan tumpukan hewan dalam sistem pemeliharaan berbasis AI. Dataset yang digunakan terdiri dari 5.000 gambar berbasis anotasi, dengan data untuk 70% penelitian, 20% untuk validasi, dan 10% untuk pengujian. Model dievaluasi menggunakan metrik precision, recall, mAP0.5, dan mAP0.5:0.95 setelah 50 epoch. Hasilnya menunjukkan bahwa YOLOv8 memiliki performa keseluruhan yang lebih baik daripada YOLOv5, terutama pada metrik mAP0.5:0.95 dengan peningkatan sebesar 25%, sedangkan YOLOv5 hanya mencapai 10%. Dalam hal mendeteksi objek yang kompleks, YOLOv8 lebih akurat daripada YOLOv5, yang lebih cepat tetapi kurang sensitif terhadap objek yang lebih kecil. Hasilnya, YOLOv8 lebih cocok untuk aplikasi pendeteksi lingkungan secara real-time, meningkatkan sampah yang berkelanjutan, dan berintegrasi dengan konsep smart city.
Keywords
Article Details
Copyright (c) 2025 Deden Lasmana, Nyayu Latifah Husn, RD. Kusumanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- A. El jaouhari, A. Samadhiya, A. Kumar, E. Mulat-weldemeskel, S. Luthra, and R. Kumar, “Turning trash into treasure: Exploring the potential of AI in municipal waste management - An in-depth review and future prospects,” Jan. 01, 2025, Academic Press. doi: 10.1016/j.jenvman.2024.123658.
- F. M. Assef, M. T. A. Steiner, and E. P. de Lima, “A review of clustering techniques for waste management,” Jan. 01, 2022, Elsevier Ltd. doi: 10.1016/j.heliyon.2022.e08784.
- J. Gunaseelan, S. Sundaram, and B. Mariyappan, “A Design and Implementation Using an Innovative Deep-Learning Algorithm for Garbage Segregation,” Sensors, vol. 23, no. 18, Sep. 2023, doi: 10.3390/s23187963.
- M. M. Abo-Zahhad and M. Abo-Zahhad, “Real time intelligent garbage monitoring and efficient collection using Yolov8 and Yolov5 deep learning models for environmental sustainability,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-99885-x.
- E. Alharbi, G. Alsulami, S. Aljohani, W. Alharbi, and S. Albaradei, “Real-time detection and monitoring of public littering behavior using deep learning for a sustainable environment,” Sci Rep, vol. 15, no. 1, p. 3000, Dec. 2025, doi: 10.1038/s41598-024-77118-x.
- P. Sharma, K. Srinivasan, M. M. Azizan, K. Hasikin, A. Salwa, and M. Khairuddin, “An automated solid waste detection using the optimized YOLO model for riverine management.”
- L. Chen and J. Zhu, “Water surface garbage detection based on lightweight YOLOv5,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-55051-3.
- L. M. Pires, J. Figueiredo, R. Martins, and J. Martins, “IoT-Enabled Real-Time Monitoring of Urban Garbage Levels Using Time-of-Flight Sensing Technology,” Sensors, vol. 25, no. 7, Apr. 2025, doi: 10.3390/s25072152.
- S. Liu, R. Chen, M. Ye, J. Luo, D. Yang, and M. Dai, “EcoDetect-YOLO: A Lightweight, High-Generalization Methodology for Real-Time Detection of Domestic Waste Exposure in Intricate Environmental Landscapes,” Sensors, vol. 24, no. 14, Jul. 2024, doi: 10.3390/s24144666.
- Z. Wang, X. Yang, X. Zheng, and H. Li, “Vision-Based On-Site Construction Waste Localization Using Unmanned Aerial Vehicle,” Sensors, vol. 24, no. 9, May 2024, doi: 10.3390/s24092816.
- Y. Ren, Y. Li, and X. Gao, “An MRS-YOLO Model for High-Precision Waste Detection and Classification,” Sensors, vol. 24, no. 13, Jul. 2024, doi: 10.3390/s24134339.
- I. E. Agbehadji, A. Abayomi, K. H. N. Bui, R. C. Millham, and E. Freeman, “Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin,” Sensors, vol. 22, no. 16, Aug. 2022, doi: 10.3390/s22166176.
- C. Zhang, J. Yue, J. Fu, and S. Wu, “River floating object detection with transformer model in real time,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-93659-1.
- B. Fang et al., “Artificial intelligence for waste management in smart cities: a review,” Aug. 01, 2023, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s10311-023-01604-3.
- H. Wang, C. Wang, Y. Ao, and X. Zhang, “Fuzzy control algorithm of cleaning parameters of street sweeper based on road garbage volume grading,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-92771-6.
- G. Qiao, M. Yang, and H. Wang, “An annotated Dataset and Benchmark for Detecting Floating Debris in Inland Waters,” Scientific Data , vol. 12, no. 1, Dec. 2025, doi: 10.1038/s41597-025-04594-9.
- A. Mohsen, T. Kiss, and F. Kovács, “Machine learning-based detection and mapping of riverine litter utilizing Sentinel-2 imagery,” Environmental Science and Pollution Research, vol. 30, no. 25, pp. 67742–67757, May 2023, doi: 10.1007/s11356-023-27068-0.
- I. Purwita Sary, E. Ucok Armin, S. Andromeda, E. Engineering, and U. Singaperbangsa Karawang, “Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection Using Aerial Images,” Ultima Computing : Jurnal Sistem Komputer, vol. 15, no. 1, 2023.
- Rifqi Fadhila Shandi, Meta Kallista, and Casi Setianingsih, “Penggunaan Algoritma YOLOv8 untuk Deteksi Jenis Sampah: Studi Implementasi di Website Bank Sampah Bersinar,” 2024.
References
A. El jaouhari, A. Samadhiya, A. Kumar, E. Mulat-weldemeskel, S. Luthra, and R. Kumar, “Turning trash into treasure: Exploring the potential of AI in municipal waste management - An in-depth review and future prospects,” Jan. 01, 2025, Academic Press. doi: 10.1016/j.jenvman.2024.123658.
F. M. Assef, M. T. A. Steiner, and E. P. de Lima, “A review of clustering techniques for waste management,” Jan. 01, 2022, Elsevier Ltd. doi: 10.1016/j.heliyon.2022.e08784.
J. Gunaseelan, S. Sundaram, and B. Mariyappan, “A Design and Implementation Using an Innovative Deep-Learning Algorithm for Garbage Segregation,” Sensors, vol. 23, no. 18, Sep. 2023, doi: 10.3390/s23187963.
M. M. Abo-Zahhad and M. Abo-Zahhad, “Real time intelligent garbage monitoring and efficient collection using Yolov8 and Yolov5 deep learning models for environmental sustainability,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-99885-x.
E. Alharbi, G. Alsulami, S. Aljohani, W. Alharbi, and S. Albaradei, “Real-time detection and monitoring of public littering behavior using deep learning for a sustainable environment,” Sci Rep, vol. 15, no. 1, p. 3000, Dec. 2025, doi: 10.1038/s41598-024-77118-x.
P. Sharma, K. Srinivasan, M. M. Azizan, K. Hasikin, A. Salwa, and M. Khairuddin, “An automated solid waste detection using the optimized YOLO model for riverine management.”
L. Chen and J. Zhu, “Water surface garbage detection based on lightweight YOLOv5,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-55051-3.
L. M. Pires, J. Figueiredo, R. Martins, and J. Martins, “IoT-Enabled Real-Time Monitoring of Urban Garbage Levels Using Time-of-Flight Sensing Technology,” Sensors, vol. 25, no. 7, Apr. 2025, doi: 10.3390/s25072152.
S. Liu, R. Chen, M. Ye, J. Luo, D. Yang, and M. Dai, “EcoDetect-YOLO: A Lightweight, High-Generalization Methodology for Real-Time Detection of Domestic Waste Exposure in Intricate Environmental Landscapes,” Sensors, vol. 24, no. 14, Jul. 2024, doi: 10.3390/s24144666.
Z. Wang, X. Yang, X. Zheng, and H. Li, “Vision-Based On-Site Construction Waste Localization Using Unmanned Aerial Vehicle,” Sensors, vol. 24, no. 9, May 2024, doi: 10.3390/s24092816.
Y. Ren, Y. Li, and X. Gao, “An MRS-YOLO Model for High-Precision Waste Detection and Classification,” Sensors, vol. 24, no. 13, Jul. 2024, doi: 10.3390/s24134339.
I. E. Agbehadji, A. Abayomi, K. H. N. Bui, R. C. Millham, and E. Freeman, “Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin,” Sensors, vol. 22, no. 16, Aug. 2022, doi: 10.3390/s22166176.
C. Zhang, J. Yue, J. Fu, and S. Wu, “River floating object detection with transformer model in real time,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-93659-1.
B. Fang et al., “Artificial intelligence for waste management in smart cities: a review,” Aug. 01, 2023, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s10311-023-01604-3.
H. Wang, C. Wang, Y. Ao, and X. Zhang, “Fuzzy control algorithm of cleaning parameters of street sweeper based on road garbage volume grading,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-92771-6.
G. Qiao, M. Yang, and H. Wang, “An annotated Dataset and Benchmark for Detecting Floating Debris in Inland Waters,” Scientific Data , vol. 12, no. 1, Dec. 2025, doi: 10.1038/s41597-025-04594-9.
A. Mohsen, T. Kiss, and F. Kovács, “Machine learning-based detection and mapping of riverine litter utilizing Sentinel-2 imagery,” Environmental Science and Pollution Research, vol. 30, no. 25, pp. 67742–67757, May 2023, doi: 10.1007/s11356-023-27068-0.
I. Purwita Sary, E. Ucok Armin, S. Andromeda, E. Engineering, and U. Singaperbangsa Karawang, “Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection Using Aerial Images,” Ultima Computing : Jurnal Sistem Komputer, vol. 15, no. 1, 2023.
Rifqi Fadhila Shandi, Meta Kallista, and Casi Setianingsih, “Penggunaan Algoritma YOLOv8 untuk Deteksi Jenis Sampah: Studi Implementasi di Website Bank Sampah Bersinar,” 2024.